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A model is presented for the determination of the unit-cell size for ordered and disordered binary o" 
phases from a geometry assuming spherical atoms. The basis of the calculations is the assumption of an 
average radius of the atoms occupying each of the five crystallographic sites in the unit cell. The model 
is then used to predict the changes in lattice parameters produced by fast-neutron irradiation and by the 
addition of a third element in some ternary a phases. The calculated parameters are compared with 
experimental results. 

Introduction 

Sttiwe (1959) has shown that the a phase can be re- 
garded as a sphere-packing structure, and demon- 
strated the approximate validity of this approach by 
calculating, with considerable accuracy, the values of 
the a and c parameters of many binary a phases. Frank 
& Kasper (1959) have also emphasized the sphere- 
packing nature of this and related phases composed of 
transition-metal atoms. Although Sttiwe did not take 
into account the effect of ordering on the calculated 
values of a and c, it is reasonable to suppose that a 
change in the order of a a phase consisting of dis- 
similar spherical atoms would show lattice-parameter 
changes. It is the purpose of this paper to show how 
the size of the unit cell for the ordered and disordered 
binary a phase can be determined from geometry as- 
suming spherical atoms. The model is then used to 
predict the changes in lattice parameter produced by 
(i) fast-neutron bombardment, (ii) the inclusion of a 
non-transition element in the a phase, and (iii) the 
replacement of one element by another to create ter- 
nary a phases. The results obtained are compared with 
experimental results. 

Lattice parameters of the ~ phase 

The a-phase structure can be constructed in an ap- 
proximate way by superimposing a hexagonal close- 
packed layer of atoms on a similar close-packed layer 
and rotating the former by 90 ° relative to the latter 
(Frank & Kasper, 1959). Missing sites exist in each 
of the two layers which, after the stacking process, lie 
in vertical rows which would form empty 'tubes' in 
the structure if they were not filled with atoms of either 
component (denoted X or Y) of the binary system. The 
tetragonal symmetry which the structure possesses can 
be derived from the hexagonal symmetry of the ap- 
proximate close-packed layers by a shear stress which 
is applied to each layer after stacking. The resulting 
shear leads to better packing of the dissimilar X and 
Y atoms which are contained in each layer. In the unit 
cell of 30 atoms, five distinct crystallographic sites are 

recognized, each being distinguished by its atomic sur- 
roundings and coordination number. The lattice co- 
ordinates, occupancy and coordination number of each 
site are given in Table 1 for the a phase FeCr, as 
determined by Bergman & Shoemaker (1954). The 
structure determinations of other a phases show minor 
changes in the coordinate values. Also included in the 
Table 1 is the general ordering scheme found in many 
a phases (Spooner & Wilson, 1964), the larger atom 
being designated X and the smaller Y. 

In spite of the tetragonal symmetry of the structure, 
the atoms in the horizontal layers which contain the 
A, B, C and D sites display a quasi-hexagonal sym- 
metry about the vertical rows of E-type atoms, as 
shown in Fig. 1. Because of the much shorter bond 
between E-type atoms, Sttiwe (1959) assumed that 
these atoms played very little part in controlling the 
a parameter of the unit cell. Accordingly, Stiiwe cal- 
culated this parameter by assuming sphere packing for 
the A, B, C and D-type layer atoms only. Furthermore, 
Stfiwe assumed that the ordered nature of the a phase 
did not affect the average radius of the atoms estimated 
from the atomic percentage composition. We believe 
that the E-type atoms have the effect of contracting 
the size of the pseudo-hexagonal rings which are a 
feature of the layers and must therefore be taken into 
account in estimating the size of the unit cell from 
geometrical considerations. This view was also adopted 
in a study of the effect of neutron irradiation on the 
ZrgAI3 structure (Wilson, Wilson, Joksimovic & West- 
phalen, 1973). In order to substantiate this claim and 
determine the effect of disordering on the size of the 
unit cell, it is proposed to calculate the a and c par- 
ameters for the known ordered binary a phases on the 
basis of sphere packing taking into account, not only 
the size of the E atoms, but also the ordered nature 
of the phase. The lattice parameters of a disordered 
phase are given by assuming an average radius for all 
the atoms in the unit cell based on the binary composi- 
tion. 

Basis of calculation of unit-cell parameters 
The contents of a unit cell of the a-phase structure 
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might be described as consisting of interlocking hex- 
agonal rings of A, B, C and D-type atoms surrounding 
the four pairs of E-type atoms situated at z=¼ and 
z = k .  More fundamentally, the structure is seen as a 
face-centred tetragonal lattice, each lattice point being 
associated with a structural unit consisting of atoms 
D D A D D  at z--½ and atoms C C B B C C  at z = 0, together 
with two pairs of E-type atoms symmetrically disposed 
on either side of the unit. This complex configuration 
of atoms appears at the centre of the unit cell and at 
each corner in Fig. 1. The presence of the fourfold 
screw axes at the mid-points of the sides of the unit 
cell in Fig. 1 ensures that the central structural unit 
is oriented at right angles to those located at the corners 
of the cell. The departure from true hexagonal sym- 
metry surrounding the rows of E-type atoms is a con- 
sequence of the requirement for packing atoms of dif- 
ferent size. In the related structure adopted by Zr4AI 3, 
the hexagonal symmetry is retained because each layer 
consists of one type of atom only (Wilson, Thomas & 
Spooner, 1960; Wilson et al., 1973). Although this 
fundamental difference exists, the stacking of the layers 
of the o- phase is similar to that of the Zr4A13 structure 
in so far as one layer is rotated by 90 ° relative to the 

B D C C B 

D D D 

C 

@ z=¼,~l 
• z=½ 

(~ z=0 

Fig. 1. Projec t ion  of  the unit cell o f  the cr phase  a long the c 
axis. 

next and packing difficulties in the vertical direction 
are avoided by creating missing sites in each layer 
prior to stacking. This permits the vertical rows of 
E-type atoms to be sited in the vacant tubes formed 
by the alignment of the missing layer sites. The rows 
of E-type atoms threading the close-packed layers ap- 
pear to bind the two layers together. 

The geometrical disposition of atoms surrounding 
the E sites is such that if the E-type atoms are in con- 
tact with their neighbours they cannot be spherical 
but must have an oblate spheroidal shape. This distor- 
tion of E-type atoms is marked by their short inter- 
atomic distance which is approximately 12 % less than 
the sum of the Goldschmidt radii. The size of the unit 
cell suggests that the atoms in the horizontal layers 
are also deformed slightly in accommodating the rows 
of E-type atoms so that their atomic radii are effec- 
tively decreased in the xy  plane. Although the layer 
structure and stacking are similar to Zr4A13, they are 
not the same because the departure from hexagonal 
symmetry leads to an inexact placing of the atoms of 
one layer above the hollows of the layer below. This 
imperfect form of stacking is in accordance with the 
distortion of the atoms in the vertical direction and has 
the merit of providing a flexibility in the ratio of X: Y 
atoms which can be accommodated in each layer and 
hence the wide range of composition generally found 
in the binary o- phase. 

Ordered cr phases 

The binary cr phase is often found to be an ordered 
structure and experimental results show that atomic 
radius plays a large part  in the ordering process (Hall 
& Algie, 1966; Spooner & Wilson, 1964), the general 
rule being that the larger atoms occupy those sites 
which have a larger coordination number. It is found 
that the A and D-type sites have similar ordering ten- 
dencies and are predominantly occupied by the smaller 
Y atoms, whilst the B and C sites have similar ordering 
tendencies with the larger X atoms occupying most of 
the sites. The E sites are predominantly occupied by 
the larger X atoms. The fractional occupation cf each 
site by X er Y atoms depends on the composition of 
the ~r phase. In the atomic configuration associated 
with each lattice point, the two triangles of A and D 
sites appear to retain a close-packed equilateral struc- 
tare which is only possible if the atoms occupying 
these positions have the same radii. Likewise, the struc- 
ture motif CCB-BCC,  consisting of  B and C atoms, 
can only contribute to the quasi-hexagonal symmetry 

Table 1. Lattice coordinates, occupancy and coordination number for  o--FeCr 

Crystal site 
A 
B 
C 
D 
E 

Number of Coordination 
atoms Coordinates Number Ordering scheme 

2 0,0,0 12 Mainly Y 
4 x, x, 0 (x = 0-4) 15 Mainly X 
8 x,y,O (x=0.467, y=0.133) 14 X+Y, mainly X 
8 x,y,O (x=0.733, y=0.067) 12 Mainly Y 
8 x,x,z (x=0.183, z=0.25) 14 X+Y, mainly X 
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of the structure if their atomic radii are similar. This 
kind of correlation is impcrtant  since it implie~ that 
the ordering phenomenon exerts some influence on the 
size of the unit cell, as will be apparent later. In the 
ensuing calculations it is assumed that the atoms oc- 
cupying a particular site have an average radius deter- 
mined by the fractional occupancy of the constituent 
elements. 

Calculation of" the c parameter 
The configuration of atoms at each lattice point 

[Fig. 2(a)] comprises five vertical panels together with 
two vertical rows of E-type atoms. The centre panel 
consisting of BBABB type atoms is joined to four sym- 
met, ically disposed panels consisting of BCDBC atoms, 
as illustrated in Fig. 2(b) and (c). An estimation of the 
c parameter is obtained by supposing that each ver- 
tical panel and each vertical row of E-type atoms con- 
sists of spheres in contact, the radiu~ of each atom 
ra, r B . . .  etc. being that derived from the ordering 
scheme as explained earlier. If the panels and rows 
are constructed independently in this fashion, three 
possible values of the c parameter are obtained from 
the following relations (see Fig. 2): 

for panel BBABB: cx = 2(rA + rs) cos 01, 
whore sin 01 = rB/(rA + rB) 

for panel BCDBC: c2=(rB+rc+ 2rD) cos Oz, 

where sin 02 

=(rB + ,'c)/(r~ + rc + 2ro) . 

N.B. B and C are assumed to have a common radius 
of ½(r8 + rc) for each row of E atoms: ca = 4re. In creating 
the a phase from these elements of structure, cx and Ca are 
increased whilst ca is reduced, the changes involved 
being a manifestation of the stresses produced wl~en 
they are brought together. At each lattice point there 
are one BBABB and four BCDBC panels together with 
two EE rows, so that the formula: 

c0 = (c, + 4c2 + 2c3)/7 (1) 

is taken as an estimate of the final c parameter. The 
weighting used in this formula reflects the influence 
that each subunit of structure has on determining the 
height of the unit cell. 

Calculation of  the a parameter 
In order to calculate the a parameter by a similar 
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Fig. 2. (a) The configuration of  the atoms. (b), (c) different ways of atomic packing, showing estimates of c. (d) Atomic packing 
showing one estimate of  a. 
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synthesis of structural elements we note that each lat- 
tice-point configuration is joined to its neighbour by 
C-C-type atom linkages. The C-atom linkages can be 
regarded as pairs of spherical atoms which make con- 
tact at the fourfold screw axes of the unit cell, so that 
the size of the unit cell is simply related to the size of 
the basic configuration unit. In isolation, and in the 
absence of E-type atoms, the configuration unit would 
have a size determined by close packing in the con- 
stituent panels which were considered in estimating Co. 
If we ignore the presence of the E-type atoms and as- 
sume C-C-type atom linkages between adjacent con- 
figuration units we can obtain two possible formulae 
for the value of a as follows. Referring to triangle 
A C ' P  (z=  x) in Fig. 3, one estimate for a is given by: 

al rerc 
=(rA + 2rD+rc) COS (450--(o) - ~/2(rB d- 2rc) 

where sin ~ = rD/(ra + rD). 
In this formula the second term corrects for the fact 

that the C' atom connected to A does not lie on the 
unit-cell boundary. Likewise from triangle ABP,  in 
which B A P = 4 5  °, 

PB 2 = (re + 2rc) z = a2/4 + r~ - 2(a/2)rB cos 45 °, 

whence, the second possible value of the a parameter, 
say a2, is given by: 

az= 1/2. re + ~/~2r~+ 16(r~ + rerc). 

In the absence of E-type atoms a reasonable value for 
tbe a parameter would be given by ½(at +az), the av- 
erage of the two possible values of a reflecting the ad- 
justments which would follow when two layer struc- 
tures are superimposed. The effect of inserting rows 
of E atoms can be taken into account by supposing 
that the E atoms, together with adjacent A and B 
atoms, form vertical connecting planes along the diag- 
onals of the unit cell. In these independently devised 
configurations the E atoms can be conceived as spheres 
in contact with the A and B atoms, as shown in Fig. 
2(d). From this diagram, a third estimate of  the side 
of the unit cell is obtained: 

i.e. 

a3 - V ( r a + r e )  2 Z r ] + l / ( r e ~ r e )  z r~+re 
1/2 

aa= 1/2. r , +  ~ / ~  + 4rare+ 1/2rZn +4rnrz.  

I ° - 

O 1  

p ,  
o l  , A : ~- "j 

Fig. 3. Atomic packing showing one estimate of a. 

The influence of  the E atoms in determining the final 
value of a is taken into account by using the average 
of these three estimates, i.e. 

a0 = ½(al + az + a3). (2) 

Effect o f  disorder on ao and Co - lattice changes 
Both the formulae for a0 and Co are simplified con- 

siderably for a a phase with random order, for then 
the radii of all the atoms have the same average value 
which is determined solely by the atomic percentage 
composition of  the alloy. Thus, for the above, using r 
to represent the random-order atomic radius: 
i.e. 

c~ = 4r cos 30 ° (sin 01 = r/2r = 0.5 and 01 = 30°), 
c~ =4rl /3/2= 21/3r= 3-4641r, 
c; = 4 r  cos 30 ° = 3.4641r, 
ca = 4 r ,  

whence 

c' = (cl + 4Cz + ca)/7 = 25.3205r/7 = 3"6172r. 

Likewise" 

a'l=4r cos 15 ° -  1/2r=7-2560r, 
a; = (I/2 + 1/34)r = 7.24515r, 
a;=(l/2. + 21/6)r = 6"3131r, 

and 
a' = ½(al + az + a3) = 6.938 l r .  

Results and discussion 

Ordered and disordered binary a phases 
The calculated values of a and c using the above 

equations are presented in Table 2 together witb the 
observed values, the latter being taken from Hall & 
Algie (1966) except where noted. 

A few discrepancies were apparent in the initial 
calculations on ordered phases which could not be 
accounted for, especially for those phases involving 
Mn as the Y component. This was thought to be due 
to the use of the normally accepted values for the Gold- 
schmidt atomic radii. Using the generally accepted 
atomic radius of 1.35 A for Mn gave calculated values 
for a0 and Co which differed from the observed values 
by as much as 5 %. In order to obtain agreement to 
within 1%, the atomic radius was taken as 1.27 A. 
It is clear from the work of Chessin, Arajs & Miller 
(1970) that the atomic volumes of the transition ele- 
ments in the first long period do not follow the same 
variation with atomic number as the Goldschmidt 
radii. Using this value of 1.27 A for rMn and the fol- 
lowing, somewhat smaller atomic radii for the remain- 
ing transition elements in this period, gives a similar 
size order to that used by Chessin et al. in their study 
of lattice-parameter changes in solid solutions, rNl = 
1.24, rco= 1.25, rFe= 1"26, rMn= 1"27, rcr= 1"28, r v =  
1.33 A., and at the same time gives calculated values 
of a0 and Co which are within 1% of the observed 
values. Kitchingman (1968) has suggested that transi- 
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tion elements may exist in different states with differ- decreasing with increasing coordination number. The 
ent radii which are associated with the coordina- fact that most of  the atoms in the cr phase 
tion number of that state, the atomic radius have coordination numbers greater than 12 supports 
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the adoption of  radii slightly smaller than the Gold- 
schmidt values which are normalized to coordination 
number  12. Finally, it must be pointed out that 1.40 A 
was used for rA~ instead of 1.42 A. Th.is value was also 
used in the discussion of the Zr4AI3 structure (Wilson, 
Wilson, Joksimovic & Westphalen,  1973) and is jus- 
tified on the grounds that A1 is not a transition metal. 
The reduced radius of  1.40 A was chosen because it is 
similar to that found in many a luminum alloys. 

It is of  interest to compare the simple formulae 
derived above for the lattice parameters of  disordered 
phases with those given by Stiiwe (1959), namely a ' =  
6.85r and c ' =  3.57r. In both cases, the values of a '  and 
c' are approximately 1% greater than those derived 
on a much simpler basis by Sttiwe. As seen in Table 
2 (ii), the calculated values of a'  and c' are generally 
within 1% of the observed values for those a phases 
whose ordering is unknown and assumed to be dis- 
ordered. Thus, the new formulae appear to give better 
agreement than those obtained using Stiiwe's formulae 
with the same average radii. 

There were still some remaining discrepancies when 
the random formulae were used and these were ascribed 
to some degree of order. Support is given for this sug- 
gestion from the agreement obtained between calcula- 
tion and observation for the known ordered phases 
using the complex formulae of equations (1) and (2), 
as seen in Table 2 (i). Thus, these equations might be 
used to predict order. This has been done for the 'dis- 
ordered'  phases Nb65Rh35, Mo63Mn37 etc. using simple 
ordering schemes based on a phases of similar com- 
position, as seen in Table 2 (ii). Better agreement is 
obtained for the calculated values a0 and Co when a 
reasonable order scheme is adopted. 

The kind of  agreement overall is probably best seen 
in Fig. 4 where calculated and observed values of  a 
and c are plotted against the weighted atomic radius. 

Application o f  ]brmulae to neutron-irradiated a phases 

The above formulae were originally developed in 
order to estimate the changes in lattice parameter  
produced by disordering after fast-neutron irradiation. 
The values of  a and c before and after disordering by 
neutron irradiation of several ordered a phases taken 
f rom Spooner's (1968) paper, together with the values 
calculated using the above 'ordered'  and 'disordered'  
formulae,  are given in Table 3. The most satisfactory 

feature of  these results is the anisotropy in the predicted 
changes of a and c. In all cases the value of  c increases 
on disordering whilst the value of a decreases or shows 
a positive change which is less than the increase in c. 
The magnitudes of the predicted changes are generally 
somewhat less than the observed changes caused by 
neutron irradiation, and might be attributed to tbe 
fact that the alloys were not completely disordered after 
irradiation. 

The formulae derived in the present work have given 
dependable results for the lattice parameters of  un- 
irradiated a phases, have shown the extreme sensitivity 
in these values for small changes in the average atomic 
radii, and the ability to predict order in phases previ- 
ously assumed to be disordered. Thus, it seems rea- 
sonable to use the formulae to predict small variations 
from the disordered state in irradiated a phases in 
order to improve the agreement presented in Table 3, 
and then to see if these changes have any detr imental  
effect on the calculated X-ray diffraction intensities. 

It should be pointed out that, in the work of Wilson 
& Parselle (1965) and Spooner (1968), evidence of  dis- 
order in neutron-irradiated a phases was indicated in 
the changes in intensity of the X-ray diffraction lines. 
These intensity results suggested that the alloys were 
partially or wholly disordered by the irradiation, but 
in some instances the intensities were relatively insensi- 
tive to small changes in order and no detailed calcula- 
tions were performed to link the changes in order in 
the various crystallographic sites with the changes in 
lattice parameter. 

The re-ordering among the various crystallographic 
sites and their effect on the calculated lattice-parameter 
changes are presented in Table 4. It is apparent  that 
there is considerable improvement.  The calculated 
diffraction intensities are presented in Table 5 and no 
serious differences between calculation and observa- 
tion have been introduced. Thus, the usefulness of the 
derived formulae for the calculation of  lattice param- 
eters in irradiated a phases is demonstrated.  

These calculations have served to justify the use of 
the derived formulae, but do not account completely 
for the observed changes. This is not surprising, since 
the disordering of the crystal structure is only one pos- 
sible manifestat ion of the atomic displacements effected 
by fast-neutron bombardment .  It is well known that 
point  defects are also created which might aggregate 

Table 3. Effects o f  neutron irradiation o f  ordered phases 

Observed values (A) 
Before 

o" Phase irradiation 
At.% X Y At.% a c 

65 Mo Os 35 9"615 4.947 
72 Mo Ir 28 9"631 4-957 
60 Nb Os 40 9"858 5.063 
45 Mo Re 55 9-603 4"983 
33 Mo Re 67 9 .572  4"976 
50 W Re 50 9 .628  5.013 
33 W Os 67 9 .634  4-986 

Calculated values (A) 
After Before 

irradiation Changes ( x 103) irradiation 
a c Aa Ac ao Co 

9.585 4-994 --30 4 - 4 7  9 .597  4.981 
9"584 4.986 -47  4 - 2 9  9 .628  4.995 
9-850 5"080 - 8  4 - 1 7  9 . 8 8 5  5.084 
9.584 5"005 -19  4-22 9 .595  5.001 
9"561 4.993 - 11 + 17 9.572 4.985 
9.621 5.032 - 7  4- 19 9 . 6 3 9  5.015 
9-580 5.010 -54  +24 9"634 5"009 

After 
irradiation Changes ( x 103) 
a" c" Aa Ac 

9"599 5-001 +2 4-20 
9"616 5"013 -12  4- 18 
9"866 5"144 - 19 4-60 
9"599 5-004 4- 4 + 3 
9"574 4"991 4-2 4-6 
9"644 5"028 4-5 4-13 
9"645 5"029 4-11 + 20 
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in particular planes to create planar defects. Spooner 
(1968) has suggested that the preferential siting of such 
defects coupled with distortion of the kagom6 layers 
might be partly responsible for the observed results. 

The inclusion of a third element in the binary phase 
In their review of the nature of the ~ phase, Hall & 

Algie (1966) have given evidence to support the general 
contention that the structure of this phase is mainly 
governed by geometrical factors. The success achieved 
by Sttiwe (1959) is only marred by the inability of his 
approach to account for the effects of ordering which 
is an important feature of this phase. Using the equa- 
tions derived above, which are based on the average 
atomic radii of the atoms occupying the five different 
sites in the structure, the effects of replacing atoms of 
one element by those of another in any given site can 
be determined. 

There are several publications on the effects of re- 
placing one of the binary components of a ~ phase by 
a third element, which report interesting results not 
hitherto explained by a simple sphere-packing theory. 
The applications of the present model to some of these 
phenomena are examined below. 

Addition of a third transition metal 
In the study reported by Kitchingman & Bedford 

(1970, 1971) the changes in lattice parameters were 
measured when 3.4 at. % of various transition elements 
were incorporated in o'-FeV in which equal atomic 
proportions of Fe and V were always maintained. 
Starting with the order scheme for o'-Fe40V60 given by 
Hall & Algie (1966), modified to account for the small 
difference in composition, the changes in a0 and c0 
produced by the inclusion of one non-transition ele- 
ment atom into the cr-FeV unit cell (equivalent to 3.4 
at. %) have been determined by using revised order 
schemes. The revised order schemes adopted for these 
calculations together with the observed and calculated 
changes in a0 and Co are given in Table 6(a). 

Alth ougb the choice of revised order scheme adopted 
for each of the ternary cr phases has been guided by a 
need for producing agreement between observed and 
calculated changes in a0 and c0, the revisions seem 
reasonable. With Ta or W as the third element (des- 
ignated Z), the same revised order scheme is used. This 
involves slight shifts only in the V and Fe occupancy 
of the atomic sites and gives values for a0 and Co which 
are in good agreement with the observed results. A 
slightly different order scheme is adopted for Re which 
has a smaller radius than Ta or W but still larger than 
V and Fe (rRe = 1"37 A). In these three cases the added 
transition atom tends to occupy C and E sites. The 
exceptional behaviour adopted by Mn in replacing ene 
Fe atom in the A site of the assumed order scheme is 
in accordance with the general order behaviour of 
smaller atoms occupying sites with low coordination 
number• The value of the radius cf the Mn atom used 
in the calculations was the same as that adopted in 

A C 2 9 A  - 3* 
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earlier calculations (rM,= 1"27 A). The order scheme 
adopted for a-VFe(Zr) is different to the rest in so far 
as the V: Fe occupancy of the B sites is almost reversed 
and the Fe content of the C sites reduced to zero. 
Wbilst this reversal may seem to contradict the general 
order rule that the larger X atoms occupy the B, C 
and E sites with the larger coordination numbers, it is 
questionable whether this rule can apply when one of 
the a-phase components (Zr) is not a true transition 
element. The normal Goldschmidt radius ofrzr = 1"60 A 
has been used in these calculations and, as seen in 
Table 6 the Zr atom can be accommodated in the unit 
cell to give the observed changes in a0 and Co, provid- 
ing the normal a-VFe order scheme is modified. 
Whether the hard-sphere concept can still be main- 
tained for a phases containing such atoms is question- 
able and it would be of interest to check this revised 
a-VFe(Zr) order scheme with X-ray or neutron-dif- 
fraction techniques. 

a phases including a non-transition element, aluminum 

In their study of the occurrence of ~r-phase alloys 
of transition elements with non-transition elements, 
Hansen & Raman (1970) measured the lattice param- 
eters of many alloys derived from A1 with Nb, Ta or 
Zr. Of interest here are the binary a phases Nb2AI 
and TazA1 which are able to form ternary o- phases 
containing Nb, Ta and A1 or Nb, Zr and A1. By as- 
suming a suitable order scheme for a-Nb2Al the values 
of a0 and co are calculated and the effect on these par- 
ameters of replacing Nb by Ta to form Nb34Ta34AI32 
(NbTaA1) and ultimately Ta2AI, is investigated by using 
modified order schemes. In addition to this example 
the effect of replacing Nb in NbzAI by Zr is determined 
in a similar way. The results of these calculations 
together with the measured value,, of a0 and Co ob- 
tained by Hansen & Raman are given in Table 6(b). 

The variations in lattice parameter reported by Han- 
sen & Raman for the various ternary cr phases formed 
by Nb, Ta and AI are interesting, for example, in the 
sequence Ta2AI, Ta34Nb34A13z, TaxaNbsaAI32, Nb2AI, in 

which the atomic fraction of AI is almost constant, the 
effective reolacement of Ta atoms by Nb atoms leads 
to a gradual increase in a0 from 9.864 to 9.943 A but 
to a decrease in co from 5.215 to 5.186 A, the inter- 
mediate Co values being 5.174 and 5.162 A. Thus, 
whilst the a0 parameter increases monotonically the Co 
parameter displays a minimum at the composition 
TaI4Nb54AI32. In order to reproduce this kind of be- 
haviour in the calculations it is not l~ossible to use tbe 
order scheme for Nb2A1 suggested by Brown & For- 
syth (1961) in which AI atoms are placed preferentially 
in A and D sites only. 111 the modified order scheme 
quoted in Table 6(b) AI shares A, C and D sites with 
Nb atoms. Again this assumption may be questioned 
and needs experimental justification which should be 
possible in this case with X-ray diffraction. However, 
using this initial order scheme allows progressive kinds 
of order schemes to be used for the ternary NbTaAI 
alloys and the final a-Ta2Al whose calculated param- 
eters give changes Aao and Aco which are in approxi- 
mate agreement with experiment. By the same token 
the parameters of the ternary alloy NbZrA1 can be 
calculated to give changes in a0 and c0 which are in 
fair agreement with experiment. 

Although agreement with changes in a0 and Co is 
obtained, the general order rule is not obeyed and A1 
atoms are frequently found in sites which are noi- 
mally reserved for the a-phase component with the 
larger atom. In quoting these results, however, it is 
fair to point out that AI is not a transition-metal atom 
and electronic factors in addition to size factors may 
govern the site occupancy. Kitchingman & Bedford 
(1970) suggest that AI atoms should tend to destabilize 
the binary a phases of transition elements and form 
body-centred cubic phases, a role opposite to that of 
Si which tends to stabilize binary a phases. The dif- 
ference in behaviour between AI and Si was attributed 
by Gupta, Rajah & Beck (1960) to the greater electro- 
positivity of A1 to Si. The formulae used for calculat- 
ing a0 and Co are based on a geometrical pattern of 
atoms rather than simple close packing and to this 

Io = Observed unirradiated ; I =  Observed irradiated;  

a phase MoesOs3s 
hkl Io 1 Ic Io IR 
101 21 - 24 2 1 
111 6 - 7 - - 
311 - 3 - 6 9 
002 29 16 30 24 33 

112 [ 99 81 93 102 96 
410 1 
330 38 36 36 45 43 
202 27 25 28 40 38 

212 [ 73 97 70 76 67 
420 l 
411 114 157 119 121 133 
331 70 60 64 57 60 
222 12 14 16 13 12 
312 } 
430 18 11 18 15 14 

Mo72Ir2s 
Io I Ic Io 
16 - 16 2 

6 - 5 - 

- 5 - 6 

21 12 22 20 

Table 5. Intensities 

78 128" 74 81 

30 40 27 36 
20 36 21 32 

62 85 55 61 

133" 175" 87 96 
60 51 49 45 
11 - 13 11 

11 15 14 12 

Ic = Calculated ordered;  IÜ = Calculated disordered;  In = Calculated reordered 

Nb60Os40 M045Ress M033Re67 
IR Io I Ic ID IR 10 I lC ID 1R I0 I IC I0 IR 

2 35 19 33 2 10 12 5 12 2 2 11 -- 11 2 2 
- -  1 1  3 9 - -  3 3 - -  2 - -  - -  2 - -  3 - -  1 

6 -- -- -- 8 3 4 4 3 7 10 4 8 4 7 7 
26 32 26 31 28 27 25 19 29 25 35 25 25 30 25 35 

81 96 81 104 115 107 97 93 97 105 89 100 105 100 105 94 

35 35 38 40 50 43 46 46 43 46 44 48 41 41 46 42 
32 29 42 32 47 38 37 41 36 40 38 35 45 37 41 37 

59 88 88 80 86 84 74 76 78 81 75 76 65 78 82 73 

106 132 114 124 135 122 127 124 127 123 140 123 130 129 125 135 
51 75 106 68 65 65 64 55 60 59 65 61 63 65 60 65 
11 14 23 18 16 16 15 16 14 14 12 16 16 15 14 13 

12 19 23 22 18 18 18 16 18 17 13 17 20 18 17 14 

* Denotes  overlapping impuri ty  lines. 
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extent, therefore, the sites occupied by atoms are not 
dictated by the need to fit into the pattern. It is as- 
sumed that any apparent misfit caused by smaller 
atoms lying in larger sites will be supported by ap- 
propriate electronic forces between atoms as implied 
in the disordered binary ~ phases created by neutron 
irradiation. 

The addition o f  silicon 

The role of silicon dissolved in binary cr phases has 
been considered by Aronnson & Lundstr6m (1957) 
and Gupta, R a j a n &  Beck (1960). In the earlier work 
of Aronnson & Lundstr6m the lattice parameters of 
the ~ phase containing equal atomic percent of Fe and 
Cr and varying quantities of dissolved Si were measured 
up to the solubility limit of 14 at. %. The order scheme 
for the equiatomic o- phase Fe50Crs0 has been deter- 
mined by Algie & Hall (1966) so that this system offers 
a good test for the calculation of lattice-parameter 
changes caused by the admixture of silicon. To illus- 
trate the application of the formulae for ao and c0, 
calculations are made for one ~ phase only. The values 
of a0 and Co for this representative phase containing 
7 at .% Si were obtained from the curves given by 
Aronnson & LundstrSm showing the variation of a0 
and c0 with increasing Si content. The Si content in 
this phase corresponds to 2-1 atoms of Si per unit cell. 
The revised order scheme for the phase which gives 
agreement with the observed values for the changes in 
a0 and c0 (Aa0 and Aco) is given together with the cal- 
culated and observed values of a0 and c0 for the phases 
with and without Si in Table 6(c). 

The work of Gupta et al. (1960) is complementary 
to that of Aronnson & LundstrSm and they report 
values of lattice parameters for the binary ~ phase FeV 
containing various amounts of dissolved silicon. Again 
to demonstrate the ability of the formulae to calculate 
the changes in a0 and c0, one composition only con- 
taining 10 at. % of Si is chosen. For calculating Aao 
and ACo the order scheme for ty-FeV is the same as 
that used for the calculations above, slightly modified 
to take into account the different composition. The 
revised order schemes assumed for the o- phases con- 
taining Si are chosen to give approximate agreement 
with the approximate observed values of a0 and Co as 
shown in Table 6(c). In all the calculations the atomic 
radius of Si was assumed to be rsi = 1"30 ,~. This is 
somewhat lower than the normally quoted Gold- 
scbmidt radius (rsi= 1.34) but is in keeping with the 
reduced values of rv (=  1.33) and rve (=  1"26) chosen 
for the earlier binary cr-phase calculations, and still 
larger than rcr-- 1 '28 A .  

The observed changes in lattice parameters on in- 
corporating Si into both a-FeV and cr-FeCr are an- 
isotropic with a reduction in a0 and an increase in c0. 
The evidence cited by Aronnson & Lundstr6m (1957) 
and Gupta et al. (1960) supported the suggestion that 
the Si atoms occupied D-type sites in the unit cell, but, 
on the simple sphere-packing model of the t7 phase 

proposed by Sttiwe (1959) the presence of Si atoms in 
such sites was bound to give increased values of a0 
and Co, unless the radius of the Si atoms was assumed 
to be less than that of the atoms replaced. Although 
the value of rsi used here is less than normal, it is still 
intermediate between that of V and Fe in the a-FeV 
phase and greater than that of Fe and Cr in the o--FeCr 
phase. The calculated changes Aao and Aco for both 
examples have the correct sign and agree approximately 
with experiment, with the added Si atoms assuming 
D-type sites in the unit cells. In each case, however, 
the order schemes required to achieve this approximate 
kind of agreement assume that the smaller Fe atoms 
replace one or more of the larger Cr or V atoms in 
the B sites of the unit cell. It is interesting to note that 
a similar re-ordering pattern is used in both cases. 

Conclusions 

The calculation of the lattice parameters of the tr 
phase has been made solely on the basis of the average 
radius of atoms occupying each of the possible five 
sites in the unit cell. In all cases the calculated values 
are within 1% of the observed values of a0 and Co. 
The model is most successful in offering an explanation 
of the changes in lattice parameter which occur when 
the o- phase is reordered and emphasizes the importance 
of order in this phase. 
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